
MDEX
Security Assessment
April 7th 2021

Summary

Overview
Project Summary
Engagement Summary
Understandings

assets/Airdrop
assets/AirdropMDX
assets/BlackHole
assets/Repurchase
governance/GovernorAlpha
governance/Timelock
governance/TeamTimeLock
mainnet/CoinChef
mainnet/MdxToken
oracle/Oracle
heco

Findings
CTK-MDEX#2-01 | Undeclared variable
CTK-MDEX#2-02 | A typo in the oracle contract
CTK-MDEX#2-03 | Incorrect contract addresses
CTK-MDEX-01 | Dangerous Time-based Calculation
CTK-MDEX-02 | Unreachable Function
CTK-MDEX-03 | Wrong Assembly Code
CTK-MDEX-04 | Missing override specifier
CTK-MDEX-05 | Wrong Inheritance Hierarchy
CTK-MDEX-06 | Wrong Constant Value
CTK-MDEX-07 | Inconsistent Solidity Version
CTK-MDEX-08 | Function Return Value Ignored
CTK-MDEX-09 | Over Privileged Ownerships
CTK-MDEX-10 | `minter()` Function Permission Not Restricted
CTK-MDEX-11 | `add()` Function Input Not Restricted
CTK-MDEX-12 | Checks Effects Interaction Pattern Not Used
CTK-MDEX-13 | Proper Usage of `public` and `external`

1

Appendix | Finding Categories

Disclaimer

About CertiK

2

Summary
This report has been prepared for MDEX smart contracts, one the leading currency trading
platforms on the heco chain, to discover issues and vulnerabilities in the source code as
well as any dependencies that were not part of an officially recognized library. A
comprehensive examination has been performed, utilizing static analysis and manual
review techniques.

The auditing process pays special attention to the following considerations:
● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and

industry standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart

contracts produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by security experts.

The security assessment resulted in 13 findings that ranged from minor to informational.
We recommend addressing these findings as potential improvements that can benefit the
long run. We have done rounds of communications over the general understanding and
the MDEX team has resolved the questions promptly.

Overall the source code is well written with security practices. The business logic is
comprehensive and implemented accordingly. Yet we suggest a few recommendations that
could better serve the project from the security perspective:

1. Enhance general coding practices for better structures of source codes;
2. Add enough unit tests to cover the possible use cases given they are currently

missing in the repository;
3. Provide more comments per each function for readability, especially contracts that

are verified in public.
4. Provide more transparency on privileged activities once the protocol is live and

gradually give the privileged permissions to the community once the protocol
reaches a certain level of decentralization.

3

Overview

Project Summary

Name MDEX

Codebase https://github.com/mdexSwap/contracts/tree/master/contracts

Engagement Summary

Delivery Date Mar 24th, 2021

Methodology Static analysis, manual review and testnet simulation

Commit Hash f9650a130c67c4b7804e8f92355ad7a7d2d50722;

02fd25468d0215ba0030c1713cc84e9a46cfb8c2

Understandings
MDEX is viewed as the composite DeFi ecosystem that integrates DEX, IMO, and DAO. It is
one of the largest decentralized protocols deployed and maintained at HECO. Mdex is an
automatic market-making decentralized exchange based on the concept of funding pools.
Besides the same foundation as other DEX protocols, tt proposes and implements a
dual-chain DEX model based on the Huobi Eco Chain and Ethereum .It combines the
advantages of the low transaction fees of the Huobi Eco Chain and the prosperity of the
Ethereum ecosystem, and supports the dual mining mechanism of liquidity and
transactions.

assets/Airdrop
Airdrop is the standard vault/masterchef implementation where users deposit LP tokens in
return for the rewards of wrapped HT. Enough checks applied to newAirdrop() by the
owner to make sure the system parameters are aligned with enough coverage of WHT
tokens.

4

https://hecoinfo.com/address/0xF9852C6588b70ad3c26daE47120f174527e03a25

governance/TeamTimeLock
The TeamTimeLock is used for locking an amount of MDX tokens that are reserved for the
team, and allows it to be withdrawn based on the time elapsed: every 30 days with 24 cycle
times.

mainnet/CoinChef
The CoinChef is a standard implementation similar to terms like vault or masterchef, that
allows end-users to stake LP tokens in return for token rewards. The innovation part
introduced is the so-called double mining, where sushi pools are also supported that would
allow end-users to stake both LP tokens on mdex and sushi and in return earning rewards
of both MDX and SUSHI.

mainnet/MdxToken
The MdxToken is the standard implementation of ERC20 protocol with minimal extra
features on top. It’s the representation of MDX on Ethereum and it’s mintable by privileged
minter role accounts.

oracle/Oracle
The Oracle contract follows accurate time-weighted average prices (TWAPs) as the principle
where could be referenced via sample oracle implementation there. It is used to view price
information about a given asset from a given pair.

heco
The heco folder contains the core functionalities of MDEX’s swapping protocol. In general:

1. Factory: The contract for creating pairs and includes utility functions to calculate the
required token amount or the maximum output amount for a swap operation.

2. HecoPool: The vault contract that allows users to deposit LP tokens in return for
MDX or other token as rewards. The "owner" can add new LPs to the pool to provide
more options for users to earn rewards. The contract calculates and distributes
rewards to the LP token providers when they call the deposit and withdraw function.
Unlike most farming projects in the space, the HecoPool enables farming with the
"multLp" token.

3. MdxTokenHeco: The token contract follows ERC20 with additional functionalities on
voting and minting;

6

https://github.com/Uniswap/uniswap-v2-periphery/blob/4123f93278b60bcf617130629c69d4016f9e7584/contracts/examples/ExampleOracleSimple.sol

4. Router: The contract includes the handler for add and remove liquidity in a different
scenario. It also includes a group of functions with the prefix "swap" in its function
name to implement various ways to swap tokens. The main difference between
various swap methods is they take a distinct path from the input token to the output
token. ;

5. SwapMining: The core contract for swapping implementations that share the similar
functionalities as UniSwap, with additional features that would allow liquidity
providers to earn MDX during the swap procedure.

7

Findings

ID Severity Response

CTK-MDEX#2-01 minor Pending

CTK-MDEX#2-02 minor Resolved

CTK-MDEX#2-03 minor Pending

CTK-MDEX-01 minor Pending

CTK-MDEX-02 minor Pending

CTK-MDEX-03 minor Pending

CTK-MDEX-04 minor Pending

CTK-MDEX-05 minor Pending

CTK-MDEX-06 minor Pending

CTK-MDEX-07 minor Pending

CTK-MDEX-08 Informational Pending

CTK-MDEX-09 Informational Pending

CTK-MDEX-10 informational Pending

CTK-MDEX-11 minor Pending

CTK-MDEX-12 minor Pending

CTK-MDEX-13 Informational Pending

8

CTK-MDEX#2-01 | Undeclared variable

Type Severity Location

Volatile Code Minor bscContracts/mdxToken.sol:
constructor()

Description
The variable preMineSupply is used in the _mint() function inside the contract
constructor, but the variable is not defined in the contract.

Recommendation
Declare the preMineSupply variable and assign a value to it.

9

CTK-MDEX#2-02 | A typo in the oracle contract

Type Severity Location

Compiler Error Minor bscContracts/oracle.sol:
consult()

Description
There is a letter q at the end of line 273, this causes an error when compiling the contract.

Recommendation
We assume this is a typo, the letter q should be removed.

Alleviation
The update has been applied here:
https://github.com/mdexSwap/contracts/commit/c9de3a25d4db6dc3e0c5231f4428b46232
e104f1

10

https://github.com/mdexSwap/contracts/commit/c9de3a25d4db6dc3e0c5231f4428b46232e104f1
https://github.com/mdexSwap/contracts/commit/c9de3a25d4db6dc3e0c5231f4428b46232e104f1

CTK-MDEX#2-03 | Incorrect contract addresses

Type Severity Location

Volatile Code Minor bscContracts/repurchase.sol:
L850-L853

Description
Multiple contracts' address is defined from line 850 to line 853 in the Repurchase contract.
We find that those addresses belong to contracts deployed in the Heco chain instead of the
Binance smart chain.

Recommendation
Update addresses to point them to specific contracts deployed in the Binance smart chain.

11

CTK-MDEX-01 | Dangerous Time-based Calculation

Type Severity Location

Volatile Code minor oracle/Oracle.sol: consult()

Description
In function consult(), priceAverage would be updated based on the variable
timeElapsed. It is possible to call update() first and then immediately call consult(). In
this scenario, the value of timeElapsed would be rather small, and thus priceAverage
could get a relatively large value.

Recommendation
Recommend adding a require() check to make sure a minimal period of time between the
calls of update() and consult(). Also, it is not recommended updating the value of
priceAverage in consult().

12

CTK-MDEX-02 | Unreachable Function

Type Severity Location

Volatile Code Minor governance/Timelock.sol:
setPendingAdmin()

Description
Function setPendingAdmin has a require statement checking msg.sender ==

address(this), which means external calls are forbidden. However, the function is never
called in the codebase.

Recommendation
Recommend either modify the require() check or add a helper function in the contract to
call the setter function.

13

CTK-MDEX-03 | Wrong Assembly Code

Type Severity Location

Compiler Error Minor heco/Factory.sol:
constructor() of MdexERC20

Description
The local variable chainId is assigned to chainid, which is not a valid assembly code:

constructor() public {

uint chainId;

assembly {

chainId := chainid

}

...

}

Recommendation
Recommend correcting the assembly code to chainId := chainid().

14

CTK-MDEX-04 | Missing override specifier

Type Severity Location

Compiler Error Minor heco/Factory.sol

Description
Based on the assumption that the contracts are to be deployed using 0.6.12, as the
truffle-config file is using 0.6.12. There are multiple showings of functions lacking the
override specifier. This will lead to failure of compiling the contracts with solidity 0.6.12.

Recommendation
For the inheriting functions, it is required to add virtual to every non-interface function
intended to override, and to add override to the overriding functions, according to the
Solidity 0.6.0 Breaking Changes.

15

https://docs.soliditylang.org/en/v0.6.10/060-breaking-changes.html#how-to-update-your-code

CTK-MDEX-05 | Wrong Inheritance Hierarchy

Type Severity Location

Compiler Error Minor heco/Factory.sol:

contract MdexPair

Description
Contract MdexPair is inherited from MdexERC20 and IMdexPair.

1. There are compiler errors for DOMAIN_SEPARATOR, PERMIT_TYPEHASH, allowance,
balanceOf, decimals, name, nonces, symbol, and totalSupply:

Derived contract must override function "xxx". Two or more base

classes define function with same name and parameter types. Since one

of the bases defines a public state variable which cannot be

overridden, you have to change the inheritance layout or the names of

the functions.

2. There are compiler errors for approve, permit, transfer and transferFrom:

Derived contract must override function "xxx". Two or more base

classes define function with same name and parameter types.

16

CTK-MDEX-06 | Wrong Constant Value

Type Severity Location

Compiler Error Minor mainnet/CoinChef.sol

Description
constant mdxPerBlock is assigned to 100 ** 1e18, which seems too large.

Recommendation
It seems the value should be 100 * 1e18 instead of 100 ** 1e18.

17

CTK-MDEX-07 | Inconsistent Solidity Version

Type Severity Location

Compiler Error Minor heco/Router.sol

oracle/Oracle.sol

Description
The contract versions of heco/Router.sol and oracle/Oracle are locked at 0.6.6, while
truffle-config is using 0.6.12.

Recommendation
It is okay to try different compiler versions during the development stage.

However, we recommend locking the contract version when it reaches the production
stage, and in this case seems 0.6.12 is more compatible.

18

CTK-MDEX-08 | Function Return Value Ignored

Type Severity Location

Volatile Code Informational CoinChef.sol: L85, L393, L395

Description
1. Return values of function IERC20(_addLP).approve(sushiChef,uint256(- 1)) are

ignored in function addSushiLP(address).
2. Return values of mdx.transfer(_to,mdxBal);mdx.transfer(_to,_amount) are

ignored in the function safeMdxTransfer().

Recommendation
We advise developers to handle the return values of aforementioned functions to check if
the transfer is executed without any error.

19

CTK-MDEX-09 | Over Privileged Ownerships

Type Severity Location

Control Flow Informational Airdrop, AirdropMDX, Repurchase,
HecoPool, MdxTokenHeco, Router,
SwapMining, CoinChef

Description
There are functions with modifier onlyOwner in the mentioned contracts, where the owner
account could set some state variables, new airdrops, add new LP tokens, etc. These
privileged behaviors could all potentially damage the economic system if abused without
obtaining the consensus of the community.

Recommendation
Renounce ownership when it is the right timing; or gradually migrate to a timelock plus
multisig governing procedure and let the community to monitor in respect of transparency
considerations.

20

CTK-MDEX-10 | `minter()` Function Permission Not Restricted

Type Severity Location

Control Flow informational MdxToken: setMinter()

Description
In MdxToken, function setMinter has its scope declared as external, without any
modifiers. Everyone could call setMinter and let their own address be the minter in this
case. Since function mint is only restricted by checking if minter is equal to msg.sender in
onlyMinter, with the unprotected function setMinter, everyone could mint unlimitedly.

Recommendation
Consider assigning the contract creator as the first minter and then transfer to a different
one if necessary. We understand that the team had handled this well during the post
deployment stage as if such a thing happens the MDX could be simply replaced with a
newly created contract.

21

CTK-MDEX-11 | `add()` Function Input Not Restricted

Type Severity Location

Volatile Code minor CoinChef, Airdrop, AirdropMDX,
HecoPool

Description
The comments mentioned // XXX DO NOT add the same LP token more than once.

Rewards will be messed up if you do.

The total amount of reward in function updatePool() will be incorrectly calculated if the
same LP token is added into the pool more than once in function add().

However, the code is not reflected in the comment behaviors as there isn't any valid
restriction on preventing this issue.

The current implementation is relying on the trust of the owner to avoid repeatedly adding
the same LP token to the pool, as the function will only be called by the owner.

Recommendation
Using mapping of addresses -> booleans, which can restrict the same address being
added twice.

22

CTK-MDEX-12 | Checks Effects Interaction Pattern Not Used

Type Severity Location

Volatile Code Minor CoinChef, Airdrop, AirdropMDX,
HecoPool

Description
In functions deposit() and withdraw() of the four contracts, the Checks Effects Interaction
Pattern is not strictly followed. Using interfaces, the implementation of safeTransfer or
safeTransferFrom are unknown and may have a malicious logical implementation that
calls back to the function deposit(). This is dangerous to the calculation like the user's
balance, the pool’s totalAmount, etc.

Recommendation
We advise developers to strictly follow the Checks-Effects-Interactions Pattern to avoid
reentrancy and potential assets lost.

23

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern

CTK-MDEX-13 | Proper Usage of `public` and `external`

Type Severity Location

Gas Optimization Informational General

Description
public functions that are never called by the contract could be declared external. When
the inputs are arrays external functions are more efficient than public functions.

Recommendation
Consider using the external attribute for functions never called from the contract.
● newAirdrop(uint256,uint256,uint256): Airdrop.newAirdrop(uint256,uint256,uint256)

(assets/Airdrop.sol#83-96)
● setCycle(uint256): Airdrop.setCycle(uint256) (assets/Airdrop.sol#106-108)
● add(uint256,IERC20,bool): Airdrop.add(uint256,IERC20,bool) (assets/Airdrop.sol#112-125)
● set(uint256,uint256,bool): Airdrop.set(uint256,uint256,bool) (assets/Airdrop.sol#128-134)
● deposit(uint256,uint256): Airdrop.deposit(uint256,uint256) (assets/Airdrop.sol#179-195)
● withdraw(uint256,uint256): Airdrop.withdraw(uint256,uint256) (assets/Airdrop.sol#198-213)
● emergencyWithdraw(uint256): Airdrop.emergencyWithdraw(uint256) (assets/Airdrop.sol#216-224)
● newAirdrop(uint256,uint256,uint256): AirdropMDX.newAirdrop(uint256,uint256,uint256)

(assets/AirdropMDX.sol#79-92)
● setCycle(uint256): AirdropMDX.setCycle(uint256) (assets/AirdropMDX.sol#102-104)
● add(uint256,IERC20,bool): AirdropMDX.add(uint256,IERC20,bool) (assets/AirdropMDX.sol#108-122)
● set(uint256,uint256,bool): AirdropMDX.set(uint256,uint256,bool) (assets/AirdropMDX.sol#125-131)
● deposit(uint256,uint256): AirdropMDX.deposit(uint256,uint256) (assets/AirdropMDX.sol#186-205)
● withdraw(uint256,uint256): AirdropMDX.withdraw(uint256,uint256) (assets/AirdropMDX.sol#208-226)
● emergencyWithdraw(uint256): AirdropMDX.emergencyWithdraw(uint256)

(assets/AirdropMDX.sol#229-240)
● setAmountIn(uint256): Repurchase.setAmountIn(uint256) (assets/Repurchase.sol#32-34)
● setEmergencyAddress(address): Repurchase.setEmergencyAddress(address)

(assets/Repurchase.sol#36-39)
● addCaller(address): Repurchase.addCaller(address) (assets/Repurchase.sol#41-44)
● delCaller(address): Repurchase.delCaller(address) (assets/Repurchase.sol#46-49)
● getCaller(uint256): Repurchase.getCaller(uint256) (assets/Repurchase.sol#59-62)
● emergencyWithdraw(address): Repurchase.emergencyWithdraw(address) (assets/Repurchase.sol#78-81)
● propose(address[],uint256[],string[],bytes[],string):

GovernorAlpha.propose(address[],uint256[],string[],bytes[],string)
(governance/GovernorAlpha.sol#138-176)

● queue(uint256): GovernorAlpha.queue(uint256) (governance/GovernorAlpha.sol#178-187)
● execute(uint256): GovernorAlpha.execute(uint256) (governance/GovernorAlpha.sol#194-202)

24

● cancel(uint256): GovernorAlpha.cancel(uint256) (governance/GovernorAlpha.sol#204-217)
● getActions(uint256): GovernorAlpha.getActions(uint256) (governance/GovernorAlpha.sol#219-222)
● getReceipt(uint256,address): GovernorAlpha.getReceipt(uint256,address)

(governance/GovernorAlpha.sol#224-226)
● castVote(uint256,bool): GovernorAlpha.castVote(uint256,bool) (governance/GovernorAlpha.sol#250-252)
● castVoteBySig(uint256,bool,uint8,bytes32,bytes32):

GovernorAlpha.castVoteBySig(uint256,bool,uint8,bytes32,bytes32)
(governance/GovernorAlpha.sol#254-261)

● __acceptAdmin(): GovernorAlpha.__acceptAdmin() (governance/GovernorAlpha.sol#283-286)
● __abdicate(): GovernorAlpha.__abdicate() (governance/GovernorAlpha.sol#288-291)
● __queueSetTimelockPendingAdmin(address,uint256):

GovernorAlpha.__queueSetTimelockPendingAdmin(address,uint256)
(governance/GovernorAlpha.sol#293-296)

● __executeSetTimelockPendingAdmin(address,uint256):
GovernorAlpha.__executeSetTimelockPendingAdmin(address,uint256)
(governance/GovernorAlpha.sol#298-301)

● mint(address,uint256): MdxToken.mint(address,uint256) (heco/MdxTokenHeco.sol#253-259)
● addMinter(address): MdxToken.addMinter(address) (heco/MdxTokenHeco.sol#261-264)
● delMinter(address): MdxToken.delMinter(address) (heco/MdxTokenHeco.sol#266-269)
● getMinter(uint256): MdxToken.getMinter(uint256) (heco/MdxTokenHeco.sol#279-282)
● setDelay(uint256): Timelock.setDelay(uint256) (governance/Timelock.sol#36-43)
● acceptAdmin(): Timelock.acceptAdmin() (governance/Timelock.sol#45-51)
● setPendingAdmin(address): Timelock.setPendingAdmin(address) (governance/Timelock.sol#53-58)
● queueTransaction(address,uint256,string,bytes,uint256):

Timelock.queueTransaction(address,uint256,string,bytes,uint256) (governance/Timelock.sol#60-69)
● cancelTransaction(address,uint256,string,bytes,uint256):

Timelock.cancelTransaction(address,uint256,string,bytes,uint256) (governance/Timelock.sol#71-78)
● executeTransaction(address,uint256,string,bytes,uint256):

Timelock.executeTransaction(address,uint256,string,bytes,uint256) (governance/Timelock.sol#80-105)
● price(address,uint256): MdexPair.price(address,uint256) (heco/Factory.sol#343-352)
● quote(uint256,uint256,uint256): MdexFactory.quote(uint256,uint256,uint256) (heco/Factory.sol#438-442)
● getAmountsOut(uint256,address[]): MdexFactory.getAmountsOut(uint256,address[])

(heco/Factory.sol#464-472)
● getAmountsIn(uint256,address[]): MdexFactory.getAmountsIn(uint256,address[])

(heco/Factory.sol#475-483)
● setHalvingPeriod(uint256): HecoPool.setHalvingPeriod(uint256) (heco/HecoPool.sol#84-86)
● setMdxPerBlock(uint256): HecoPool.setMdxPerBlock(uint256) (heco/HecoPool.sol#89-92)
● addMultLP(address): HecoPool.addMultLP(address) (heco/HecoPool.sol#98-102)
● getMultLPAddress(uint256): HecoPool.getMultLPAddress(uint256) (heco/HecoPool.sol#112-115)
● setPause(): HecoPool.setPause() (heco/HecoPool.sol#117-119)
● setMultLP(address,address): HecoPool.setMultLP(address,address) (heco/HecoPool.sol#121-125)
● replaceMultLP(address,address): HecoPool.replaceMultLP(address,address) (heco/HecoPool.sol#127-140)
● add(uint256,IERC20,bool): HecoPool.add(uint256,IERC20,bool) (heco/HecoPool.sol#144-160)
● set(uint256,uint256,bool): HecoPool.set(uint256,uint256,bool) (heco/HecoPool.sol#163-169)
● setPoolCorr(uint256,uint256): HecoPool.setPoolCorr(uint256,uint256) (heco/HecoPool.sol#172-175)
● deposit(uint256,uint256): HecoPool.deposit(uint256,uint256) (heco/HecoPool.sol#300-307)

25

● withdraw(uint256,uint256): HecoPool.withdraw(uint256,uint256) (heco/HecoPool.sol#367-374)
● emergencyWithdraw(uint256): HecoPool.emergencyWithdraw(uint256) (heco/HecoPool.sol#422-429)
● addPair(uint256,address,bool): SwapMining.addPair(uint256,address,bool) (heco/SwapMining.sol#85-101)
● setPair(uint256,uint256,bool): SwapMining.setPair(uint256,uint256,bool) (heco/SwapMining.sol#104-110)
● setMdxPerBlock(uint256): SwapMining.setMdxPerBlock(uint256) (heco/SwapMining.sol#113-116)
● addWhitelist(address): SwapMining.addWhitelist(address) (heco/SwapMining.sol#119-122)
● delWhitelist(address): SwapMining.delWhitelist(address) (heco/SwapMining.sol#124-127)
● setHalvingPeriod(uint256): SwapMining.setHalvingPeriod(uint256) (heco/SwapMining.sol#142-144)
● setRouter(address): SwapMining.setRouter(address) (heco/SwapMining.sol#146-149)
● setOracle(IOracle): SwapMining.setOracle(IOracle) (heco/SwapMining.sol#151-154)
● phase(): SwapMining.phase() (heco/SwapMining.sol#167-169)
● reward(): SwapMining.reward() (heco/SwapMining.sol#176-178)
● swap(address,address,address,uint256): SwapMining.swap(address,address,address,uint256)

(heco/SwapMining.sol#226-260)
● takerWithdraw(): SwapMining.takerWithdraw() (heco/SwapMining.sol#263-284)
● getUserReward(uint256): SwapMining.getUserReward(uint256) (heco/SwapMining.sol#287-299)
● getPoolInfo(uint256): SwapMining.getPoolInfo(uint256) (heco/SwapMining.sol#302-313)
● addSushiLP(address): CoinChef.addSushiLP(address) (mainnet/CoinChef.sol#83-87)
● getSushiLPAddress(uint256): CoinChef.getSushiLPAddress(uint256) (mainnet/CoinChef.sol#97-100)
● add(uint256,IERC20,bool): CoinChef.add(uint256,IERC20,bool) (mainnet/CoinChef.sol#104-120)
● set(uint256,uint256,bool): CoinChef.set(uint256,uint256,bool) (mainnet/CoinChef.sol#123-129)
● setPoolCorr(uint256,uint256): CoinChef.setPoolCorr(uint256,uint256) (mainnet/CoinChef.sol#132-135)
● deposit(uint256,uint256): CoinChef.deposit(uint256,uint256) (mainnet/CoinChef.sol#232-239)
● withdraw(uint256,uint256): CoinChef.withdraw(uint256,uint256) (mainnet/CoinChef.sol#299-306)
● emergencyWithdraw(uint256): CoinChef.emergencyWithdraw(uint256) (mainnet/CoinChef.sol#354-361)
● mint(address,uint256): MdxToken.mint(address,uint256) (mainnet/MdxToken.sol#10-13)
● getBalance(): TeamTimeLock.getBalance() (timeLock/TeamTimeLock.sol#44-46)
● setBeneficiary(address): TeamTimeLock.setBeneficiary(address) (timeLock/TeamTimeLock.sol#71-74)

26

Appendix | Finding Categories
Gas Optimization

Refer to exhibits that do not affect the functionality of the code but generate
different, more optimal EVM opcodes resulting in a reduction on the total gas cost of
a transaction.

Mathematical Operations
Refer to exhibits that relate to mishandling of math formulas, such as overflows,
incorrect operations etc.

Logical Issue
Refer to exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow
Concern the access control imposed on functions, such as owner-only functions
being invoke-able by anyone under certain circumstances.

Volatile Code
Refer to segments of code that behave unexpectedly on certain edge cases that may
result in a vulnerability.

Data Flow
Describe faults in the way data is handled at rest and in memory, such as the result
of a struct assignment operation affecting an in-memory struct rather than an
instorage one.

Language Specific
Language Specific findings are issues that would only arise within Solidity, i.e.
incorrect usage of private or delete.

Coding Style
Usually do not affect the generated byte-code and comment on how to make the
codebase more legible and as a result easily maintainable.

Inconsistency
Refer to functions that should seemingly behave similarly yet contain different code,
such as a constructor assignment imposing different require statements on the
input variables than a setter function.

Magic Numbers
Refer to numeric literals that are expressed in the codebase in their raw format and
should otherwise be specified as constant contract variables aiding in their
legibility and maintainability.

Compiler Error

27

Refer to an error in the structure of the code that renders it impossible to compile
using the specified version of the project.

Dead Code
Code that otherwise does not affect the functionality of the codebase and can be
safely omitted.

Business Model
Refer to contract or function logics that are debatable or not clearly implemented
according to the design intentions.

28

Disclaimer
This report is subject to the terms and conditions (including without limitation, description
of services, confidentiality, disclaimer and limitation of liability) set forth in the Services
Agreement, or the scope of services, and terms and conditions provided to the Company in
connection with the Agreement. This report provided in connection with the Services set
forth in the Agreement shall be used by the Company only to the extent permitted under
the terms and conditions set forth in the Agreement. This report may not be transmitted,
disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior
written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. This report is not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that
contracts CertiK to perform a security assessment. This report does not provide any
warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business
model or legal compliance.

This report should not be used in any way to make decisions around investment or
involvement with any particular project. This report in no way provides investment advice,
nor should be leveraged as investment advice of any sort. This report represents an
extensive assessing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk.
CertiK’s position is that each company and individual are responsible for their own due
diligence and continuous security. CertiK’s goal is to help reduce the attack vectors and the
high level of variance associated with utilizing new and consistently changing technologies,
and in no way claims any guarantee of security or functionality of the technology we agree
to analyze.

29

About CertiK
Founded in 2017 by leading academics in the field of Computer Science from both Yale and
Columbia University, CertiK is a leading blockchain security company that serves to verify
the security and correctness of smart contracts and blockchain-based protocols. Through
the utilization of our world-class technical expertise, alongside our proprietary, innovative
tech, we’re able to support the success of our clients with best-in-class security, all whilst
realizing our overarching vision; provable trust for all throughout all facets of blockchain.

30

